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HRMAS-NMR spectroscopy was used to assess the metabolic profile of sweet pepper (Capsicum

Annum L.). One-dimensional and two-dimensional NMR spectra, performed directly on sample

pieces of few milligrams, hence without any chemical and/or physical manipulation, allowed the

assignment of several compounds. Organic acids, fatty acids, amino acids, and minor compounds

such as trigonelline, C4-substituted pyridine, choline, and cinnamic derivatives were observed with a

single experiment. A significant discrimination between the two sweet pepper varieties was found by

using partial least-squares projections to latent structures discrimination analysis (PLS-DA). The

metabolites contributing predominantly to such differentiation were sugars and organic and fatty

acids. Also a partial separation according to the geographical origin was obtained always by

analyzing the NMR data with PLS-DA. Some of the discriminating molecules are peculiar for pepper

and contribute to define the overall commercial and organoleptic quality so that HRMAS-NMR

proved to be a complementary analysis to standard tools used in food science and, in principle, can

be applied to any foodstuff.
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INTRODUCTION

Food quality and safety and nutritional value have recently
become important topics worldwide, and in the past decade
decision making boards, e.g. national governments in close
connection with research groups, have made intense efforts to
increase the overall foodstuff quality. One of the main task is the
identification of peculiar compounds, i.e. genes, proteins, and
metabolites, that can be correlated to specific features of the
foodstuff, e.g. place of origin, nutritional values, healthiness, type
of raw material, cattle breeding, etc. Genomics (1-3), proteo-
mics (4), and metabolomics (5) approaches have therefore gained
general acceptance in chemical and biochemical foodstuff char-
acterization. They have been successfully applied to a large
number of products with the aim of determining the fingerprints
for authentication and valorization.

Genomics, proteomics, and metabolomics are considered
complementary to each other and have different applicability.
Metabolomics takes into account the most abundant low mole-
cular weight compounds, i.e. the metabolome, present in any
biological matrix, and is defined as the systematic study of the
unique chemical fingerprints that specific cellular processes left
behind. This approachwas proposed at the beginning of the 1970s
for medical and pharmacological applications and made use of

the gas chromatographic tool (6, 7). Later, other analytical
techniques were considered, and among them nuclear magnetic
resonance spectroscopy has found large application. Thanks to
its ability of offering a wide range of information on metabolites
in a single experiment, NMR has been used for determining the
metabolic profile of a large number of fruits and vegetables:
tomato (8, 9), lettuce leaves (10), potato (11), mango (12), apple
juice (13), tea (14), and grape berries (15).

Recently, the HRMAS-NMR (high resolution magic angle
spinning-nuclearmagnetic resonance) tool has been proposed as
a reliable system based on NMR spectroscopy for assessing the
metabolome of foodstuff. It offers the almost unique opportunity
of measuring samples without any chemical and/or physical
preparation by producing highly resolved NMR spectra. Quali-
tative and/or quantitative determination of specificmolecules can
be performed within the same experiment; thermo labile, light
sensitive, unstable in general compounds are barely altered, if at
all, due to the complete lack of sample manipulation. Further-
more, the fullwidth at half-height ofmost signals is on the order of
about 1 Hz, therefore comparable to the one obtained from liquid
sample equivalent so that spectroscopic information are still
present. The chemical composition of many foodstuffs has been
determined by means of 1H-HRMAS-NMR: cheese (16-18),
meat (19, 20), wheat (21), and bread and flour (22).

Because the richness of information often results in the high
complexity of spectroscopic data sets, the use of chemometric
methods to reduce thedimensionof theNMRdata for visualization
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purpose and to extract meaningful information is required. Multi-
variate data analysis combinedwithNMRbasedmetabolomics has
been successfully applied to address different issues in food authen-
tication and origin. For example, promising results have been
obtained concerning the discrimination of different floral origin
honeys (23), the classification of Corsican honey (24), Brazilian
vinegars (25), and Korean grapes and wines (26), the evaluation of
Japanese green tea quality (27), the detection of adulteration in
orange juice (28), and the differentiation of olive oil according to
cultivar and geographical origin (29, 30).

Here we present the characterization of sweet pepper
(Capsicum annuum L.) of different cultivars growing in various
zones of Italy by using the HRMAS-NMR spectroscopy com-
bined with chemometric tools. Pepper represents a typical pro-
duction ofMediterranean regions, and it has been largely studied
in the past, in particular for the antioxidants (31,32), sugars (33),
organic acids (34), fatty acids (31, 35), and capsaicinoids (36, 37)
content. However, a comprehensive chemical characterization of
sweet pepper has not yet been yielded; in the present work, we
report the identification of the major compounds detected by
means of 1H- and 13C-HRMAS-NMR spectroscopy. Multivari-
ate analysis by partial least-squares projections to latent struc-
tures discrimination analysis (PLS-DA) was established to
classify peppers from different cultivars and different geographi-
cal origins and to identify the biochemical compounds respon-
sible for the discrimination.

MATERIALS AND METHODS

Samples. During the summer 2009 period, 253 sweet peppers
(Capsicum annum L.) were collected in Piedmont and Sicily regions. Of

the samples collected, 101 samples belonged to cv. “Corno”, while 152

peppers belonged to cv. “Cuneo”. Among peppers of cv. “Cuneo”, 21

samples were harvested in Turin, 99 in “Cuneo”, and 32 in the Sicily

region; the latter were collected in the only Sicilian area producing this

crop. Among samples of cv. “Corno”, eight were harvested in the Asti

area, 10 in Turin, and 83 in “Cuneo” zone, and none was from Sicily since

at the time of this experimentation this variety was not present. Red and

yellow peppers were harvested at different stages of maturity: green (fully

developed fruit, just before the onset of maturity), breaker (approximately

one-half green skin and the other half-red or half-yellow), and red

(completely red skin) or yellow (completely yellow skin).
Sample Preparation for NMR Analysis. After harvesting, peppers

were transported in refrigerator at þ4 �C to the laboratory for NMR
analysis. Samples were washed, once with tap water and then twice with
distilled, and carefully driedwith paper. 1H- and 13CNMRspectra of both
varieties were recorded on edible parts of the pericarpus sampled directly
with a spatula. To increase the signal-to-noise ratio, by reducing the
intense water residual signal at ca. 4.7 ppm, 2D-NMR spectra were
acquired on freeze-dried samples. The latter were prepared by leaving
smashed peppers for 3 days in a freeze-drying apparatus, then frozen in
liquid nitrogen and finally powdered in a ceramic mortar with a pestle. To
ensure that the freeze-dried operation does not alter the metabolic profile,
we have compared the 1H-HRMAS-NMR spectra, reported as Support-
ing Information, of freeze-dried samples with those obtained directly
taking a piece of pepper, and no difference were found. We have also
measured the same pepper three times by sampling in different zones, and
the PLS-DA model was not able to discriminate them.

NMRMeasurements. Samples were prepared by inserting ca. 25 mg
of sweet pepper (fresh for 1D spectra and freeze-dried for multi-
dimensional) in a 4 mm HRMAS rotor with a 50 μL spherical insert.
Approximately 25 μL ofD2O phosphate buffer, 0.01M concentration and
pH value equal to 7.2, with 0.5% TSP, i.e. 3-(trimethylsilyl)-propionic-
2,2,3,3-d4 acid sodium salt, were then added.HRMAS-NMR spectra were
recorded at 298Kwith aBrukerAVANCE spectrometer operating at a 1H
frequency of 400.13 MHz, equipped with a 4 mm HRMAS dual channel
probe head and spinning the samples at 7 kHz. 1H NMR spectra were
referenced to the methyl groups signal at δ 0.00 ppm of TSP, while 13C
NMR spectra were referenced to the TSP δ 0.00 ppm.

1H-HRMAS-NMR spectra were acquired by using awater suppression
pulse sequence, noesypr1D (Bruker library), using 32K data points over a
4807 Hz spectral width and adding 256 transients. A recycle delay of 3 s
and a delay for allowing efficient NOE effect equal to 150 ms were used,
the 90� pulse length was 5.3 μs, and saturation of water residual signal was
achieved by irradiating during recycle delay at δ equal to 4.70 ppm. Each
spectrumwas FT transformed with 64K data points and manually phased
and base-lined, and a line broadening factor equal to 0.3Hzwas applied to
the FID prior FT.

13C-HRMAS-NMR spectra were acquired with the power-gated de-
coupling sequence, zgpg30 (Bruker library), using a 30� flip angle pulse of
5.0 μs. Experiments were carried out using 64K data points over a 22123
Hz (∼220 ppm) spectral width by adding 64K transients with a recycle
delay of 3 s. Each spectrum was FT transformed with 128K data points
and manually phased and base-lined, and a line broadening factor of 0.5
Hz was applied to the FID.

The 1H-1H TOCSY experiment was acquired in the TPPI phase-
sensitive mode, with a 4807 Hz spectral width in both dimensions, 100 ms
of spin-lock time of 4500Hz, 2Kdata points in f2, and 1K increments in f1,
each with 32 scans. The 1H-13C HSQC spectra were acquired in TPPI
phase-sensitive mode, with a 4807Hz spectral width in f2 dimension and a
15083Hz spectral width in f1. 2K data points in f2 and 1K increments in f1,
each with 32 scans, were used.

NMR Data Reduction and Preprocessing. All 1H NMR spectra
weremanually phased, baseline corrected, and aligned byXWINNMR3.5
software (Bruker Biospin, Karlsruhe, Germany). Each spectrum was
divided into intervals equal to 0.06 ppm (buckets) in the range from
0.06 to 9.00 ppm, with the exclusion of the water region from 4.74 to 4.86
ppm, using AMIX 3.5 software (Bruker Biospin, Karlsruhe, Germany).
All integrated buckets were scaled to the signal intensity of the peak at 3.81
ppm so that NMR spectra were bucketed in 149 variables.

Multivariate Data Analysis. Experimental data were organized into
a 253�149 matrix that was imported into Matlab software (The Math-
works, Natick, MA; version 7.4.0.287) to be processed with different
chemometric methods..

First, we investigated if the metabolic information contained in the
bucketedNMR spectra were sufficient to provide a reliable discrimination
between the cultivars considered. This taskwas accomplishedbybuilding a
classification model relating the NMR data to the varietal information; in
particular, the PLS-DA method was used for the classification step.
However, before any classification model could be computed, it was
necessary to divide the available data in two separate sets. The first one, the
training set, for the buildup of the classificationmodel, and the secondone,
the test set, for its validation. Indeed, because the model building step
involves changing some adjustable model parameters that have to be
defined in order to obtain the best results on the training data, using the
same data as a benchmark to evaluate the performance of the model itself
would result in biased overoptimistic estimate and, ultimately, in over-
fitting. On the other hand, leaving aside an independent test set to be used
for the evaluation of the model performances provides a more reliable
estimate of the classification error on unknown and external samples.

In this work, the division of the available data between training and test
set was carried out using the duplex algorithm (38), which allows
maintainance of a comparable diversity in both sets; the latter are therefore
similar in terms of representativeness. The duplex algorithm starts by
selecting from the whole data matrix X the two objects that are farthest
away from each other according to their Euclidean distance. These objects
are put into the training set. Then, among the remaining candidates, the
two objects farthest from each other are put into the test set. At the next
step, consecutive objects are selected and put alternatively in the training
and test sets, the object added being the one farthest away from all the
objects of X already in the current set. To determine which object is the
farthest one, a so-called maximin criterion is used. This criterion is the
same as in the Kennard and Stone algorithm (39), i.e. the Euclidean
distance between each candidate object and its closest neighbor already in
the considered set is computed and the object for which this distance is
maximal is added.. Eventually, 179 samples (76 from “Corno” and 103
from “Cuneo”) were included in the training set, while the remaining 74
samples (25 from “Corno” and 49 from “Cuneo”) constituted the test set.
The data set splitting can be seen in Figure 1, where the projection of the
samples onto the first two principal components is shown, together with



Article J. Agric. Food Chem., Vol. 58, No. 17, 2010 9677

the training/test labeling. It can be seen how a comparable diversity is
preserved in both sets as a consequence of the use of the duplex algorithm.

Successively, a further attempt wasmade to verify whether, on the basis
of theNMRspectra, a discrimination according to the geographical origin
of the sample was possible. However, the uneven distribution of the
geographical origins among our samples suggested us to proceed con-
sidering one cultivar at a time. Furthermore, the selection of an indepen-
dent test set was also not possible due to the class distribution, therefore
only cross-validated results were taken into account.

In all cases, prior to computation of the PLS-DA data, the matrix was
pretreated to put the spectra in themost suitable form for the successive data
analysis. In particular, each variable was Pareto-scaled, according to eq 1:

x0 ij ¼ xij - xj
ffiffiffiffi

sj
p ð1Þ

wherexij is the value of the jth variablemeasuredon the ith sample andxj and
sj are themean and the standard deviation of the jth variable, computed over
all samples. Pareto scaling was chosen over other pretreatment method (as
mean centering or autoscaling) as it allows to upweigh the contribution of
lower intensity peaks without overinflating excessively the noise.

RESULTS AND DISCUSSION

Assignment of
1
H-HRMAS-NMRSpectrum.The 1HHRMAS-

NMR spectrum of fresh sweet red pepper is reported in Figure 2,
showing the intense peaks belonging to major sugars, i.e. glucose
and fructose. Several other minor signals are visible,Figure 2, and
in order to assign them to the corresponding compounds, multi-
dimensional NMR experiments were performed. Connectivity
information obtained from 2D spectra and the use, as guidelines,
of chemical shift data reported in literature (40), allowed the
assignment of a large number of resonances, which are summa-
rized for chemical classes in Table 1-4, amino acids, carbohy-
drates, fatty acids, and organic acids respectively.

Figure 3A shows the high field region, from0.50 to 3.10ppm, of
the 1H-HRMAS-NMR spectrum, which contains signals belong-
ing to the aliphatic groups of amino acids (Table 1), organic acids
(Table 2), and fatty acids (Table 3). In particular, the signals
arising from valine, isoleucine, leucine, threonine, alanine, gluta-
mate, glutamine, γ-aminobutyrate, arginine, asparagine, acetate,
andmalate were identified,Table 1. Signals in the range from0.90
to 1.10 ppm arise from methyl or methylene groups of valine,
leucine, and isoleucine, and the correct assignment was made
based on TOCSY correlations. The latter was of help also in
identifying the compounds in the region from 1.40 to 3.10 ppm,

where several barely resolved multiplets, belonging to amino
acids, can be found. In the high field region, apart from sharp
resonance signals due to amino acids and organic acids, a series of
broad peaks appear. In particular, the signal at 0.88 ppm has in
TOCSY spectrum cross peaks with the protons at 1.28, 1.57, and
2.24 ppm. This spin system corresponds to the saturated chains of
fatty acids, and we assigned them to the protons of palmitic and
stearic acids, which are themost abundant saturated fatty acids in
sweet pepper. The cross peaks between the signal atδ=1.31 ppm
and resonances at δ= 2.03, 2.76, and 5.30 ppm are indicative of
the presence of unsaturated lipid chains. Linoleic, linolenic, and
oleic acids were present in relatively high amount and their signals
overlap in the 1H-NMR spectrum, with the exception of the
methyl groups so that signal at δ = 1.31 ppm has a broad cross
peak with protons at δ=0.89, 0.92, and 0.96 ppm, which are the
terminalCH3 of oleic, linoleic, and linolenic acids, respectively. In
the high field region of the spectrum, one also recognizes the
signals pattern of glutamine and glutamate; the multiplets at δ
equal to 2.06 and 2.12 ppm, β-CH and β0-CH, respectively,
correlate in TOCSY experiment with the signal at δ = 2.35
(γ-CH2) and 3.77 ppm (R-CH), which forms the typical spin
system of glutamate. Its presence is also confirmed by the HSQC
spectrum, which yields correlations between protons at δ= 2.12
and 3.77 ppm with 13C resonances at δ = 27.5 and 55.1 ppm,
respectively. The signals pattern of glutamine is clearly visible in
TOCSY spectrum; in fact, correlations between a series of multi-
plets at δ=2.15, 2.46, and 3.78 ppm appear, β-CH2, γ-CH2, and
R-CH, respectively. This observation is supported by the hetero-
nuclear correlations between protons and corresponding 13C
signals in the HSQC spectrum (Table 1). The doublet of doublets
at δ=2.69 ppm is not resolved, owing to overlap with the broad
signals of fatty acids at δ=2.74 and 2.76 ppm, andwe assigned it
to malate. The assignment was assessed based on TOCSY
spectrum, where the signal at δ = 2.69 ppm, β-CH, correlates
with peak at δ = 2.39 and 4.31 ppm, β0-CH and R-CH,
respectively. Pepper contains some organic acids, the most
abundant are citric, ascorbic, and malic, and their resonances
are expected in this region. The doublets of doublets at δ= 2.86
and 2.96 ppm are assigned to asparagine, β-CH and β0-CH,
respectively, on the basis of cross-peaks in TOCSY spectrumwith
the signal at δ = 4.01 ppm, i.e. R-CH, and with the correlation
with 13C signal at δ = 35.6 ppm visible in the HSQC spectrum.
Also the correlation between the peak at δ = 4.01 ppm with the
13C resonance atδ=52.4 ppm inHSQCexperiment confirms the
presence of asparagine.

Figure 1. Projection of the test and training samples onto the two principal
components.

Figure 2. 1H HRMAS NMR spectrum of sweet pepper in phosphate/D2O
buffer with 0.5% of 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium
salt (TSP).
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Figure 3B shows themiddle field region, from3.20 to 5.60 ppm,
of the 1H-HRMAS-NMR spectrum, where the main signals arise
from carbohydrates moieties (Table 4) strongly overlapping the
amino acidsR-CHpeaks.TOCSY is veryhelpful because it allows
the unequivocal assignment of these compounds. Among carbo-
hydrates, themost intense signals arise from the different isomeric
forms of D-glucose and D-fructose. Thanks to the 1H-13C HSQC
spectrum (data not shown), we assigned all the resonances ofR-D-
and β-D-glucose and R-D- and β-D-fructose, as well as we
distinguished their pyranose and furanose isomers. R-D-Fructo-
pyranose was not observed, most likely due to the low concentra-
tion. Sucrose signals are also expected in this region and give rise
to the doublet at 5.42 ppmand its correlations. Fresh pepper has a
highC vitamin content, and one can clearly observe the ascorbate
signals: the doublet at δ= 4.52 ppm and the signals at δ= 4.02
and 3.73 ppm, CH-4, CH-5, and CH-6, respectively. They all

correlate in TOCSY spectrum and are known to be the typical
spin system for this compound (40). Also, the correlation of the
doublet at δ = 4.52 ppm with the 13C signal at 77.4 ppm in the
HSQC spectrum supports the ascorbate assignment. Finally, in
this region are present a series of doublets at δ=4.44, 4.46, 4.95,
5.02, 5.27, 5.44, and 5.50 ppm, characterized by weak intensities
and having the same coupling constant: 3.8 Hz. They show no
correlation to each other in TOCSY spectrum, or, if present at all,
the cross peaks are hidden by the intense carbohydrates reso-
nances. Only the doublet at δ = 5.50 ppm shows some correla-
tions with protons at δ = 4.12, 2.18, 2.03, and 1.77 ppm; we
believe that these signals are due to olefins in cis configuration,
but no further evidence was found.

Figure 3C shows the low field region, from 5.70 to 9.50 ppm, of
the 1H-HRMAS-NMR spectrum of fresh pepper. The signals in
this range are the weakest and arise from aromatic groups of
amino acids and phenolic compounds. The two singlets at 6.52
and 8.46 ppm belong to fumarate and formate, respectively.

Table 1. 1H and 13C Chemical Shifts of Assigned Amino Acidsa

compd assignment

1H δ
(ppm)

multiplicity

[J (Hz)] 13C δ (ppm)

Amino Acids

alanine (Ala) R-CH 3.78

β-CH3 1.48 d [7.3]

arginine (Arg) R-CH 3.78

β-CH2 1.91

δ-CH2 3.25

asparagine (Asn) R-CH 4.01 dd 52.4

β-CH 2.86 dd [16.9; 7.6] 35.6

β0-CH 2.96 dd [16.9; 4.4] 35.6

γ-aminobutyrate
acid (GABA)

R-CH2 2.31 t [7.5]

β-CH2 1.92 q [7.4]

γ-CH2 3.02 t [7.5]

glutamate (Glu) R-CH 3.77 55.1

β-CH 2.06 m 27.5

β0-CH 2.12 27.5

glutamine (Gln) R-CH 3.78 55.2

β-CH2 2.15 m 27.3

γ-CH2 2.46 m 31.4

isoleucine (Ile) R-CH 3.66

β-CH 1.98

γ-CH3 1.01 d [7.1]

γ-CH 1.26

γ0-CH 1.48

δ-CH3 0.94 t [7.6]

leucine (Leu) R-CH 3.74

β-CH2 1.75

γ-CH 1.75

δ-CH3 0.97

phenylalanine (Phe) o-CH 7.34

m-CH 7.45

p-CH 7.39

threonine (Thr) R-CH 3.60

β-CH 4.25 m

γ-CH3 1.33 d [6.6]

tryptophan (Trp) CH-4, ring 7.72 d

CH-5, ring 7.20

CH-6, ring 7.28

CH-7, ring 7.54 d

tyrosine (Tyr) o-CH 7.19

p-CH 6.88 d

valine (Val) R-CH 3.65

β-CH 2.28 m

γ-CH3 0.99 d [7.0]

γ0-CH3 1.04 d [7.0]

a 1H chemical shifts refer to TSP signal (δ = 0.00 ppm), while 13C ones to TSP,
i.e. δ 0.0 ppm.

Table 2. 1H and 13C Chemical Shifts of Assigned Organic Acids and Other
Metabolitesa

compd assignment

1H δ
(ppm)

multiplicity

[J (Hz)]

13C δ
(ppm)

Organic Acids

acetate CH3 1.92 S

ascorbate CH2-6 3.73

CH-5 4.02

CH-4 4.52 d [1.8] 77.4

formate HCOOH 8.46 s

fumarate R,β-CHdCH 6.52 s

malate (Mal) R-CH 4.31 dd [9.9; 3.1]

β-CH 2.69 dd [15.4; 3.1]

β0-CH 2.39 dd [15.4; 9.9]

Unsaturated Fatty Acids

ΧH2 1.63

ΧH2-ΧHdΧH-ΧH2 2.04

ΧHdΧH 5.15

Other Metabolites

choline Ν-ΧH3 3.12 s

creatine and/or

creatinine

Ν-ΧH3 3.05 s

cinnamic compounds 6.91

7.65

6.04

7.88

7.08

7.38

C4-substituted pyridine ο-H 8.40

μ-H 7.30

ο-H 8.55

μ-H 7.27

trigonelline 9.35

9.10

9.01

Tentative Assignment

cis-olefin 4.44 d [3.8]

4.46 d [3.8]

4.95 d [3.8]

5.02 d [3.8]

5.27 d [3.8]

5.44 d [3.8]

a 1H chemical shifts refer to TSP signal (δ = 0.00 ppm), while 13C ones to TSP,
i.e. δ 0.0 ppm.
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We assigned the signals at δ = 7.34, 7.45, and 7.39 ppm to
phenylalanine, o-CH,m-CH, and p-CH, respectively, and the two
doublets at δ=6.88 and 7.19 ppm to tyrosine, o-CH, andm-CH,
respectively. Also the signals of tryptophan are visible in the
spectrum: the doublet at δ = 7.54 ppm, i.e. CH-7, has a cross
peak in the TOCSY spectrum with the doublet at δ= 7.72 ppm
(CH-4), while the peak at δ = 7.20 ppm (CH-5) correlates with
the signal at δ= 7.28 ppm (CH-6). In the low field region also a
series of broad lines are present. The signal at δ=6.91 ppm has a
TOCSY cross peak with the signal at 7.65 ppm; in apple and
mango juice, these signals were assigned to phenolic com-
pounds (12, 13), while in tomato juice authors suggested titrated

amino acid-NH2 or-NH3
þ groups that exchange protons with

the solvent (9). To elucidate this point, we measured 1H-
HRMAS-NMR spectrum of freeze-dried pepper by using pure
D2O as solvent and preparing the sample under inert atmosphere.
This allowed us to obtain aHDO free sample, where the exchange
between HDO andNH2 groups is minimized, if present at all. On
the basis of the results of this experiment, we believe that the
correct assignment of these signals, i.e. δ=6.91 and 7.65 ppm, is
to phenolic compounds,most likely, as observed for wine extracts
(41), to cinnamicmolecules. This is in agreementwith the fact that
sweet pepper is rich with such metabolites, predominantly in the
form of caffeic, ferulic, and p-coumaric acids (32). Therefore, we
assigned these signals to hydroxycinnamic compounds. Similarly,
the pairs of peaks atδ=6.04 and 7.88 ppmandδ=7.08 and 7.38
ppm, which correlate with each other in the TOCSY spectrum,
can arise from cinnamic compounds. The multiplet at δ =
7.30 ppm has an intense TOCSY cross peak with the signal at
8.40 ppm, suggesting a pyridine structure, but because the

Table 3. 1H and 13C Chemical Shifts of Assigned Fatty Acidsa

compd assignment

1H δ
(ppm)

multiplicity

[J (Hz)]

13C δ
(ppm)

Fatty Acids

Saturated Fatty Acids

C16 palmitic (p) CH2-3 1.57

C18 stearic (s) CH2-2 2.24

CH2-4-CH2-15 (p)

CH2-4-CH2-17 (s)

1.28

CH3-16 (p)

CH3-18 (s)

0.88

Monounsaturated Fatty Acids

C18:1 (oleic) CH2-2 2.36

CH2-3 1.61

CH2-4,7 1.31

CH2-8 2.03

CH-9 5.30

CH-10 5.30

CH2-11 2.03

CH2-12,17 1.31

CH3-18 0.89

Polyunsaturated Fatty Acids

C18:2 (linoleic) CH2-2 2.36

CH2-3 1.61

CH2-4,7 1.31

CH2-8 2.03

CH-9 5.30

CH-10 5.30

CH2-11 2.74

CH-12 5.30

CH-13 5.30

CH2-14 2.03

CH2-15,17 1.31

CH3-18 0.92

C18:3 (linolenic) CH2-2 2.36

CH2-3 1.61

CH2-4,7 1.31

CH2-8 2.03

CH-9 5.30

CH-10 5.30

CH2-11 2.76

CH-12 5.30

CH-13 5.30

CH2-14 2.76

CH-15 5.30

CH-16 5.30

CH2-17 2.03

CH3-18 0.96

a 1H chemical shifts refer to TSP signal (δ = 0.00 ppm), while 13C ones to TSP,
i.e. δ 0.0 ppm.

Table 4. 1H and 13C Chemical Shifts of Assigned Carbohydratesa

compd assignment

1H δ
(ppm)

multiplicity

[J (Hz)]

13C δ
(ppm)

Carbohydrates

β-D-glucose (β-Glc) CH-1 4.65 d [7.9] 97.0

CH-2 3.25 dd [ 9.3; 8.0 ] 75.2

CH-3 3.49 t [9.1] 76.8

CH-4 3.40 dd [ 9.4; 9.0 ] 70.8

CH-5 3.43 77.0

CH2-6,6
0 3.89; 3.74 61.8

R-D-glucose (R-Glc) CH-1 5.23 d [3.8] 93.2

CH-2 3.55 72.5

CH-3 3.73 73.8

CH-4 3.42 70.7

CH-5 3.81 72.5

CH2-6,6
0 3.83; 3.84 61.7

β-D-fructopyranose (β-FP) CH2-1,1
0 3.57; 3.73 65.0

CH-2 99.2

CH-3 3.81 68.6

CH-4 3.91 70.7

CH-5 4.00 70.3

CH2-6,6
0 3.72; 4.01 64.5

β-D-fructofuranose (β-FF) CH2-1,1
0 3.55; 3.59 63.8

CH-2 102.6

CH-3 4.11 76.5

CH-4 4.11 75.5

CH-5 3.81 81.8

CH2-6,6
0 3.80; 3.66 63.5

R-D-fructofuranose (R-FF) CH2-1,1
0 3.69 64.0

CH-2 105.5

CH-3 4.10 83.0

CH-4 4.00 77.1

CH-5 4.04 82.4

CH2-6,6
0 3.69; 3.83 62.1

sucrose (Suc) CH-1 (Glc) 5.42 [d 3.3] 93.2

CH-2 3.57 72.1

CH-3 3.78 73.6

CH-4 3.48 70.2

CH-5 3.85 73.4

CH2-6 3.83 61.1

CH-10 (Fru) 3.69 62.3

CH-20 104.7

CH-30 4.22 77.6

CH-40 4.04 75.0

CH-50 3.89 82.2

CH2-6
0 3.83 63.3

a 1H chemical shifts refer to TSP signal (δ = 0.00 ppm), while 13C ones to TSP,
i.e. δ 0.0 ppm.
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correlation with the p-proton is absent, we assigned these signals
to C4-substituted pyridine. Resonances with similar chemical
shifts were also found in Parmigiano Reggiano cheese, and the
presence of these compounds was proposed as well (26). Also the
signals at δ=7.27 and 8.55 ppm, which correlate with each other
in the TOCSY spectrum, can be assigned to C4-substituted
pyridine. Finally, on the leftmost part of the spectrum, there is
another spin system indicative of aromatic heterocyclic com-
pounds; the correlations of the peak at δ = 9.35 ppm with the
signals at δ = 9.10 and 9.01 ppm were assigned to trigonelline.

PLS-DA of Spectroscopic Profiles of Sweet Pepper. Multi-
variate data analysis was applied to the collected 1H NMR
spectra in order to discriminate samples according to the variety
and to the geographical origin.
Discrimination According to the Cultivar. The training set

reported in Figure 1 was used to build a PLS-DA classification
model to discriminate between the “Cuneo” and “Corno” vari-
eties. Pareto scaling was used as data preprocessing to give
enough importance to the less intense peaks without overinflating
them, as discussed in the Materials and Methods. The optimal
complexity of the model, i.e. the number of latent variables (LVs)
to be included, was chosen as the one leading to the minimum
classification error in 10-fold cross-validation and corresponded
to 10 LVs. The model resulted in a very good classification ability
(97.2%) and a fairly good nonerror rate both in cross-validation

and prediction on the independent test set (83.8% for both).
Furthermore, the fact that the cross-validated predictive ability is
compared to that on the external validation set is an index that the
probability of the model being overfitted is low. The good
separation of the two classes can also be seen in Figure 4, where
the training data are plotted onto the space spanned by the first
three latent variables.

To assess which metabolites were mostly responsible for this
discrimination, both the VIP scores and the regression coeffi-
cients of the PLS-DA model were inspected. In particular, the
variable importance in projection (VIP) score of a predictor is a
value that expresses the contribution of the individual variable in
the definition of the F-latent vector model. Because of the
normalization that is used in the definition of the VIP, variables
showing values less than 1 are considered not to contribute
significantly to the model. The VIP scores for the optimal PLS-
DA model are reported in Figure 5A, from which it is possible to
see that significant intensities are found below 6 ppm. The signal
that had the largest VIP coefficient corresponds to the anomeric
carbon of sucrose. Also other sugars, such as glucose and
fructose, contribute significantly to the discrimination between
the two cultivars, as highlighted by the VIP intensities at 3.27,
4.05, 4.11, and 5.21 ppm. Other important metabolites respon-
sible for the classification were the organic acids, in particular
malate, ascorbate, and acetate, and the fatty acids, both saturated
and unsaturated. Among amino acids, largest VIP coefficients
were found for threonine, arginine, andGABA, at 1.89, 3.27, and
1.35 ppm, respectively. To understand how the concentration of
the identified metabolites varied with respect to the cultivar, the
regression coefficients were also inspected (Figure 5B). According
to the binary coding adopted, a positive value of the regression
coefficient implies that the variable has an higher intensity in the
spectra of the cultivar “Corno” than in those of the cultivar
“Cuneo”, while a negative coefficient accounts for the opposite.
Figure 5B makes evident that cv. “Corno” peppers have the
largest sucrose concentration, with a corresponding regression
coefficient of 0.5369. High levels of glucose and polyunsaturated
fatty acidswere also found for this cultivar. On the other hand, cv.
“Cuneo” showed the largest regression coefficients for glucose,
arginine, GABA, acetate, and fatty acids.

Sugars and organic acids are key factors in determining the
sweet pepper taste features, while C vitamin, phenolic com-
pounds, and carotenoids contribute to the nutritional aspects.
On the other hand, it is known that contents of these compounds

Figure 3. 1H-HRMAS-NMR spectrum of sweet pepper: (A) high field
region; (B) middle field region; (C) low field region.

Figure 4. PLS-DA score plot derived from the 1H-HRMAS-NMR spectra of
sweet peppers, triangles represent cv. “Corno”, while stars are cv. “Cuneo”.
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can vary by genotype and ripening stage and are influenced by
growing conditions and losses after harvesting (42). Results
obtained from the PLS-DA analysis of the 1H NMR spectra
reveals that the metabolites mainly contributing to the discrimi-
nation between the two cultivars considered were sugars and
organic and fatty acids.

Discrimination According to Maturity Stage and Color. To
elucidate the influence of the ripening degree on the discrimination
observed above, we have built a PLS-DA model considering only
peppers with homogeneous maturity. Figure 6 summarized the
results for early ripening stage samples, and one can observe that
relevant metabolites for discriminating the two varieties are almost
the same as those found by analyzing the entire pepper data set,
with sucrose, glucose, and fructose being the most significant. As
previously observed also organic acids, i.e. malate, ascorbate, and
acetate, contribute to the differentiation. The only difference found
is the contribution arising from cis-olefins. Once again, higher levels
of glucose, sucrose, and fatty acids were found in cv. “Corno”.

We also considered a PLS-DA model, data not shown, for
samples with the same color, and we found that the metabolites

discriminating the varieties are again those reported for the entire
pepper data set.
Geographical Origin for cv. “Corno”. A total of 101 peppers

were considered, obtained from three different geographical areas
in Piedmont, namely “Cuneo” (83), Turin (10), and Asti (8). The
sample distribution among the classes makes the proper external
validation of the classification model rather difficult, so that only
a 10-fold cross-validation was performed. The corresponding
model (13 LVs) was dominated by the most numerous class, i.e.
“Cuneo”, as shown in Figure 7A, where the projection of the
samples onto the first 3 LVs is reported. From the point of viewof
the classification ability, an acceptable discrimination was ob-
tained, with an overall 92.1% nonerror rate in cross-validation (3
samples fromTorino and 5 samples from “Cuneo”misclassified).
Also in this case, it is possible to assess which metabolites are
responsible for such discrimination. VIP scores (data not shown)
and the regression coefficients (Figure 7B) indicate that samples
fromAsti were separated according to sugars, mostly glucose and
fructose, organic acids, i.e.malate and vitaminC, and someamino
acids, including asparagine and glutamine, content. Relatively low

Figure 5. VIP scores plot (A) and complementary regression coefficients (B) for discrimination according to the cv.
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levels of glucose and fructose, as well as of asparagine and vitamin
C is found in samples fromAsti, while the levels of glutamine and

malic acid were higher than those in peppers from “Cuneo” and

Turin. cv. “Corno” samples grown in Turin, instead, were

discriminated for their high level of asparagine, which was the

compound with the highest contribution to the classification, and

the relatively high content of ascorbate. Furthermore, they

showed a very low concentration of malate, aromatic compounds

such as cinnamic acids and phenylalanine, and unknown meta-

bolites, whose signals have a δ 5.90 ppm. Finally, relatively high

contents of all sugars, especially glucose, malate, and the same

unknownmetabolites justmentioned, were found in peppers from

“Cuneo”. On the other hand, they had a low level of asparagine,

malate and vitamin C compared to those of peppers came from

Asti and Turin.

Geographical Origin for cv. “Cuneo”. Samples were har-
vested in two different areas: 32 in Sicily and 121 in Piedmont,
among which were 99 in “Cuneo” and 21 in Turin. Also in this
case, 10-fold cross-validation was performed. The corresponding
model included 9 latent variables and resulted in an overall cross-
validation non error rate of 94.7% (three samples fromTurin and
five from “Cuneo” misclassified). The projection of the samples
onto the first 3 LVs computed by the model is reported in
Figure 7C.

In evaluating the VIP scores (data not shown) and the regres-
sion coefficients (Figure 7D), one can argue that the metabolite
mainly contributing to the discriminationmodel is sucrose, whose
VIP value is equal to 11.0418. Sugars levels were relatively low in
samples from Turin, while malate and asparagine were present in
higher concentration. In “Cuneo” samples, low levels of aspar-
agine, malate, sucrose, and glucose were found, while fructose,

Figure 6. VIP scores plot of the PLS-DA model discriminating between cv. “Corno” and cv. “Cuneo” sweet peppers harvested at an early maturity stage.

Figure 7. PLS-DA score plot and complementary regression coefficients for discrimination according to the geographical origin for cv. “Corno” and for cv.
“Cuneo” samples, (A), (B), (C), and (D), respectively. In (A), squares are samples from “Cuneo” area, triangles from Asti, and stars from Turin. In (C), empty
squares correspond to peppers from “Cuneo”, stars from Sicily, and finally circles from Turin.
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glutamine, and fatty acids were in higher concentration. Peppers
from Sicily had sucrose as the major contribution to discrimina-
tion; on the contrary, fructose and β-glucose amounts were found
to be low. Finally, small concentrations of cis olefins and
unsaturated fatty acids were found in samples from Sicily, while
acetate, glutamine, GABA, and arginine were present in higher
amounts.

The high resolution magic angle spinning NMR (HRMAS-
NMR) approach was used to yield the metabolic profile of sweet
pepper (Capsicum Annum L.). The possibility of using a single
technique to evaluate, simultaneously, soluble amino acids, small
organic acids, insoluble fatty acids, and many other metabolites
present, without any extraction, purification, and separation
steps, allows this tool to be suitable for the determination of the
metabolic profile, in principle, of any foodstuff. 1H-HRMAS-
NMR spectra combined with statistical models allowed us to
discriminate peppers from different cultivars. PLS-DA analysis
was also able to classify peppers according to their geographical
origin. The results obtained suggest that HRMAS-NMR could
be a very useful tool for pepper characterization, and combined
withmultivariate analysis, it could be a quick and reliablemethod
for classification studies.
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